Home Patent Forecast® Sectors Log In   Contact  
How it works Patent Forecast® Sectors Insights
Menu
Enjoy your FREE PREVIEW which shows only 2022 data and 25 documents. Contact Patent Forecast for full access.        

AI Biotech/Diagnostics: Cardio

Search All Applications in AI Biotech/Diagnostics: Cardio


Application US20200265948


Published 2020-08-20

Electromyographic Control Systems And Methods For The Coaching Of Exoprosthetic Users

Systems and methods are described for the coaching of users through successful calibration of a myoelectric prosthetic controller. The systems and methods are comprised of, and/or utilize, hardware and software components to input and analyze electromyography (EMG) based signals in association with movements, and to calibrate and output feedback about the signals. The hardware is further comprised of an apparatus for the detection of EMG signals, a prosthesis, an indicator, and a user interface. The software is further comprised of a user interface, a pattern recognition component, a calibration procedure, and a feedback mechanism. The systems and methods facilitate calibration of a myoelectric controller and provides the user with feedback about the calibration including information of the signal inputs and outputs, and messages about connected hardware and how to optimize signal data.



Much More than Average Length Specification


View the Patent Matrix® Diagram to Explore the Claim Relationships

USPTO Full Text Publication >

3 Independent Claims

  • 1. An electromyographic control system configured to coach prosthetic users to calibrate prosthetic devices, the electromyographic control system comprising: a myoelectric prosthetic controller configured to control a prosthetic device; an electromyographic software component communicatively coupled to a plurality of electrodes in myoelectric contact with a user, wherein the electromyograph software component is configured to perform an analysis of electromyographic (EMG) signal data of the user, the EMG signal data received from the plurality of electrodes; and a user interface configured to provide, based on the analysis of the EMG signal data, a feedback indication to the user as to a calibration quality of the EMG signal data, wherein the user interface is configured to initiate a calibration procedure to calibrate the myoelectric prosthetic controller, and wherein the user interface comprises at least one of: (i) a button user interface including a calibration button, or (ii) a virtual user interface configured to display the feedback indication as at least one of: (a) a quality metric corresponding to the calibration quality of the EMG signal data, or (b) a message corresponding to the calibration quality of the EMG signal data.

  • 14. An electromyographic control method for coaching prosthetic users to calibrate prosthetic devices, the electromyographic control method comprising: receiving, by an electromyographic software component communicatively coupled to a plurality of electrodes in myoelectric contact with a user, electromyographic (EMG) signal data from the plurality of electrodes; analyzing, by the electromyograph software component, the EMG signal data of the user; providing to a user interface, based on analyzing the EMG signal data, a feedback indication to the user as to a calibration quality of the EMG signal data; and initiating, based on the calibration quality of the EMG signal data, a calibration procedure to calibrate a myoelectric prosthetic controller, the myoelectric prosthetic controller configured to control a prosthetic device, wherein the user interface comprises at least one of: (i) a button user interface including a calibration button, or (ii) a virtual user interface configured to display the feedback indication as at least one of: (a) a quality metric corresponding to the calibration quality of the EMG signal data, or (b) a message corresponding to the calibration quality of the EMG signal data.

  • 19. A tangible, non-transitory computer-readable medium storing instructions for coaching prosthetic users to calibrate prosthetic devices, that when executed by one or more processors cause the one or more processors to: receive, by an electromyographic software component communicatively coupled to a plurality of electrodes in myoelectric contact with a user, electromyographic (EMG) data from the plurality of electrodes; analyze, by the electromyograph software component, the EMG signal data of the user; provide to a user interface, based on analyzing the EMG signal data, a feedback indication to the user as to a calibration quality of the EMG signal data; and initiate, based on the calibration quality of the EMG signal data, a calibration procedure to calibrate a myoelectric prosthetic controller, the myoelectric prosthetic controller configured to control a prosthetic device, wherein the user interface comprises at least one of: (i) a button user interface including a calibration button, or (ii) a virtual user interface configured to display the feedback indication as at least one of: (a) a quality metric corresponding to the calibration quality of the EMG signal data, or (b) a message corresponding to the calibration quality of the EMG signal data.