Home Patent Forecast® Sectors Log In   Contact  
How it works Patent Forecast® Sectors Insights
Menu
Enjoy your FREE PREVIEW which shows only 2022 data and 25 documents. Contact Patent Forecast for full access.        

Collaborative Robots

Search All Applications in Collaborative Robots


Application US20190240835


Published 2019-08-08

Motion Planning Of A Robot Storing A Discretized Environment On One Or More Processors And Improved Operation Of Same

A robot control system determines which of a number of discretizations to use to generate discretized representations of robot swept volumes and to generate discretized representations of the environment in which the robot will operate. Obstacle voxels (or boxes) representing the environment and obstacles therein are streamed into the processor and stored in on-chip environment memory. At runtime, the robot control system may dynamically switch between multiple motion planning graphs stored in off-chip or on-chip memory. The dynamically switching between multiple motion planning graphs at runtime enables the robot to perform motion planning at a relatively low cost as characteristics of the robot itself change.



Much More than Average Length Specification


View the Patent Matrix® Diagram to Explore the Claim Relationships

USPTO Full Text Publication >

12 Independent Claims

  • 1. A method of operation in a robot control system, the method comprising: for a first robot that will operate in an environment, determining a plurality of planning graphs, each planning graph respectively comprising a plurality of nodes connected by a plurality of edges, each node which represents, implicitly or explicitly, variables that characterize a respective state of the first robot, and each edge which represents a transition between a respective pair of the states of the first robot, where the respective pair of states are represented by respective ones of a pair of nodes that are coupled by a respective edge in the respective planning graph; for at least two or more of the edges of each of the planning graphs, generating a respective set of edge information that represents a volume swept by at least a portion of the first robot in transitioning between the states represented by the respective nodes that are coupled by the respective edge; storing the plurality of planning graphs and the sets of edge information in at least one nontransitory processor-readable storage; based on at least a portion of the first robot having a first set of physical dimensions at a first time, providing the sets of edge information for a first one of the planning graphs to at least one processor; and based on at least a portion of the first robot having a second set of physical dimensions at a second time, at least one dimension in the second set of physical dimensions different than a corresponding one of the dimensions of the first set, providing the sets of edge information for a second one of the planning graphs to the at least one processor.

  • 8.-17. (canceled)

  • 18. A method of operation in a robot control system, the method comprising: for a first discretized representation of an environment in which at least a first robot will operate, the environment occupied by one or more obstacles, supplying at least a portion of the first discretized representation of the environment to at least one processor; for each edge of a first planning graph of a plurality of planning graphs stored in memory relative to the at least one processor, wherein each planning graph of the plurality of planning graphs is associated with a different set of physical dimensions of the first robot, providing a respective set of edge information to the at least one processor, the respective set of edge information which represents a volume swept by at least a portion of the first robot in transitioning between a pair of states of the first robot, the pair of states of the first robot represented by respective ones of a pair of nodes of the first planning graph, the respective pair of nodes which are coupled by a respective edge of the first planning graph, the respective edge which represents a transition between the respective pair of states of the first robot; and identifying any of the edges of the first planning graph that the corresponding transition would result in a collision between at least a portion of the robot and at least a portion of at least one of the one or more obstacles in the environment.

  • 19. (canceled)

  • 21. (canceled)

  • 22. (canceled)

  • 24. (canceled)

  • 27. (canceled)

  • 28. (canceled)

  • 33.-92. (canceled)

  • 93. A method of operation in a robot control system that employs a plurality of planning graphs, each planning graph respectively comprising a plurality of nodes connected by a plurality of edges, each node which represents, implicitly or explicitly, variables that characterize a respective state of the first robot, and each edge which represents a transition between a respective pair of the states of the first robot, where the respective pair of states is represented by a respective ones of a pair of nodes that are coupled by a respective edge in the respective planning graph, the method comprising: for a first planning graph of the plurality of planning graphs, for each of a plurality of edges of the first planning graph performing collision checking for collisions between a discretized representation of a swept volume associated with the edge and a discretized representation of any obstacles in an environment in which the robot will operate; updating the first planning graph based on the collision checking; performing an optimization of the updated first planning graph to identify one or more optimized results, if any, from the updated first planning graph; determining whether the one or more optimized results, if any, from the updated first planning graph meets a satisfaction condition; in response to determining that the optimized result does not meet the satisfaction condition: for each of a plurality of edges of the second planning graph performing collision checking for collisions between a discretized representation of a swept volume associated with the edge and a discretized representation of any obstacles in an environment in which the robot will operate, updating the second planning graph based on the collision checking; and performing an optimization of the updated second planning graph to identify one or more optimized results, if any, from the updated second planning graph.

  • 98.-103. (canceled)