Home Patent Forecast® Sectors Log In   Contact  
How it works Patent Forecast® Sectors Insights
Menu
Enjoy your FREE PREVIEW which shows only 2022 data and 25 documents. Contact Patent Forecast for full access.        

Demand Response

Search All Patents in Demand Response


Patent US10732657


Issued 2020-08-04

Dispatch Prediction System Employing Weather Induced Facility Energy Consumption Characterizations

A method for dispatching buildings, including: generating data sets, each having energy values along with corresponding time and outside temperature values, wherein the energy values are shifted by one of a plurality of lag values relative to the corresponding time and outside temperature values; performing a non-linear parabolic analysis on the each of the data sets; determining a least valued residual that indicates a corresponding energy lag for each of the buildings, the corresponding energy lag describes a transient energy consumption period preceding a change in outside temperature; using outside temperatures, model parameters, and energy lags for all of the buildings to estimate a cumulative energy consumption for the buildings, and to predict a dispatch order reception time for the demand response program event; and employing the dispatch order reception time to prepare actions required to control the each of the buildings to optimally shed energy specified in a dispatch order.



Much More than Average Length Specification


View the Patent Matrix® Diagram to Explore the Claim Relationships

USPTO Full Text Publication >

3 Independent Claims

  • 1. A demand response dispatch prediction system, comprising: a building lag optimizer, configured to receive identifiers for buildings participating in a demand response program, and configured to generate energy use data sets for each of said buildings, each of said energy use data sets comprising energy consumption values along with corresponding time and outside temperature values, wherein said energy consumption values within said each of said energy use data sets are shifted by one of a plurality of lag values relative to said corresponding time and outside temperature values, and wherein each of said plurality of lag values is different from other ones of said plurality of lag values, and configured to perform a regression analysis on said each of said energy use data sets to yield corresponding regression model parameters and a corresponding residual, and configured to determine a least valued residual from all residuals yielded, said least valued residual indicating a corresponding energy lag for said each of said buildings, and regression model parameters that correspond to said least valued residual, and wherein said corresponding energy lag describes a transient energy consumption period preceding a change in outside temperature; a dispatch prediction element, coupled to said building lag optimizer and to weather stores, configured to receive, for each of said buildings, outside temperatures, said corresponding energy lag, and said corresponding regression model parameters, and configured to estimate a cumulative energy consumption for said buildings, and configured to predict a dispatch order reception time for a demand response program event; and a dispatch control element, coupled to said dispatch prediction element, configured to receive said dispatch order reception time, and configured to prepare actions required to control said each of said buildings to optimally shed energy specified in a corresponding dispatch order.

  • 8. A system for predicting a dispatch for buildings participating in a demand response program event, the system comprising: a building lag optimizer, configured to determine an energy lag for a building, said building lag optimizer comprising: a thermal response processor, configured to generate a plurality of energy use data sets for said building, each of said plurality of energy use data sets comprising energy consumption values along with corresponding time and outside temperature values, wherein said energy consumption values within said each of said plurality of energy use data sets are shifted by one of a plurality of lag values relative to said corresponding time and outside temperature values, and wherein each of said plurality of lag values is different from other ones of said plurality of lag values; and a regression engine, coupled to said thermal response processor, configured to receive said plurality of energy use data sets, and configured to perform a regression analysis on said each of said plurality of energy use data sets to yield corresponding regression model parameters and a corresponding residual; wherein said thermal response processor determines a least valued residual from all residuals yielded by said regression engine, said least valued residual indicating said energy lag for said building, wherein said energy lag describes a transient energy consumption period preceding a change in outside temperature; a dispatch prediction element, coupled to said building lag optimizer and to weather stores, configured to receive, for each of the buildings, outside temperatures, said corresponding energy lag, and said corresponding regression model parameters, and configured to estimate a cumulative energy consumption for the buildings, and configured to predict a dispatch order reception time for the demand response program event; and a dispatch control element, coupled to said dispatch prediction element, configured to receive said dispatch order reception time, and configured to prepare actions required to control said each of the buildings to optimally shed energy specified in a corresponding dispatch order.

  • 15. A method for dispatching buildings participating in a demand response program event, the method comprising: generating a plurality of energy use data sets for each of the buildings, each of the plurality of energy use data sets comprising energy consumption values along with corresponding time and outside temperature values, wherein the energy consumption values within the each of the plurality of energy use data sets are shifted by one of a plurality of lag values relative to the corresponding time and outside temperature values, and wherein each of the plurality of lag values is different from other ones of the plurality of lag values; performing a regression analysis on the each of the plurality of energy use data sets to yield corresponding regression model parameters and a corresponding residual; determining a least valued residual from all residuals yielded by the regression analysis, the least valued residual indicating a corresponding energy lag for the each of the buildings, wherein the corresponding energy lag describes a transient energy consumption period preceding a change in outside temperature; using outside temperatures, the regression model parameters, and energy lags for all of the buildings to estimate a cumulative energy consumption for the buildings, and to predict a dispatch order reception time for the demand response program event; and employing the dispatch order reception time to prepare actions required to control the each of the buildings to optimally shed energy specified in a corresponding dispatch order.