Home Patent Forecast® Sectors Log In   Contact  
How it works Patent Forecast® Sectors Insights
Menu
Enjoy your FREE PREVIEW which shows only 2022 data and 25 documents. Contact Patent Forecast for full access.        

Smart Cities: Edge Computing

Search All Patents in Smart Cities: Edge Computing


Patent US10250708


Issued 2019-04-02

High Performance Distributed System Of Record

A high-performance distributed ledger and transaction computing network fabric over which large numbers of transactions (involving the transformation, conversion or transfer of information or value) are processed concurrently in a scalable, reliable, secure and efficient manner. In one embodiment, the computing network fabric or “core” is configured to support a distributed blockchain network that organizes data in a manner that allows communication, processing and storage of blocks of the chain to be performed concurrently, with little synchronization, at very high performance and low latency, even when the transactions themselves originate from distant sources. This data organization relies on segmenting a transaction space within autonomous but cooperating computing nodes that are configured as a processing mesh. Each computing node typically is functionally-equivalent to all other nodes in the core. The nodes operate on blocks independently from one another while still maintaining a consistent and logically-complete view of the blockchain as a whole.



Much More than Average Length Specification


View the Patent Matrix® Diagram to Explore the Claim Relationships

USPTO Full Text Publication >

3 Independent Claims

  • 1. A method, comprising: configuring a set of computing elements to receive and process messages into a blockchain, wherein a message is associated with a transaction to be included in the blockchain, the computing elements organized as a set of computing nodes: for a given block to be added to the blockchain, associating ordered segments of the block within respective computing nodes, wherein a segment of the block comprises a set of one or more transactions that are unique to the segment; and processing the block into the blockchain using the ordered segments; wherein, during processing of the block, transactions within each segment are sequenced and processed concurrently with respect to one another, and wherein segments are processed independently of each other.

  • 11. A method of processing transactions that initiate from geographically-dispersed wallet services, comprising: at a local computing node that is one of a set of computing nodes, the computing nodes within the set operating autonomously, and wherein no individual computing node on its own is considered trustworthy, continuously receiving transactions; at the local computing node, and upon receipt, validating a transaction, wherein upon validating the transaction, the transaction is saved in a memory pool and propagated to other computing nodes in the set for validation of the transaction in such other computing nodes; at the local computing node, and upon initiation of an instruction to mine a block to be added to a blockchain, and for each particular segment of a set of ordered segments constituting the block, sequencing transactions from the memory pool into the particular segment and propagating digests associated with the particular segment to other computing nodes in the set for verification, wherein upon verification of each particular segment-, the segments are aggregated into the block; and upon initiation of an instruction to finalize the block, verifying the block and adding it to the blockchain.

  • 16. A computing node associated with one or more other computing nodes, wherein a set of computing nodes that includes the computing node are configured to receive and process messages into a blockchain, wherein a message is associated with a transaction to be included in the blockchain, the computing node comprising: hardware; and computer memory holding software executed by the hardware, wherein the software is configured to receive and process a given segment of a block of the blockchain, wherein the given segment of the block comprises a set of one or more transactions that are unique to the given segment, wherein during processing of the block transactions within the given segment are sequenced and processed concurrently within the computing node with respect to one another; wherein the computing node operates autonomously and asynchronously with respect to the one or more other computing nodes with which it is associated in the set of computing nodes, such that each of the segments of the block including the given segment are processed independently of each other.